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Abstract

The sequential coupling and cyclization reactions between aryl halides and (trimethylsilyl)acetylene (TMSA) with concurrent
elimination of the TMS substituent, allows a straightforward synthesis of substituted pyrano[3,2-e]indolone and pyrrolo[3,2-f]quinolone
derivatives in excellent yields.
� 2008 Elsevier Ltd. All rights reserved.
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Coumarin and quinolone sub-units are found in a large
number of natural products possessing broad-spectrum
biological activity and which exhibit antifungal, antibacte-
rial, antiviral, antimicrobial, antimalarial, insecticidal, anti-
neoplastic, antidiuretic, antiarrhythmic and sedative
properties.1–5 In particular, pyranoindole bearing hetero-
cycles have been used for their antibacterial, monoamine
oxidase (MAO) inhibitory and anthelminitic activities.6

Therefore, in continuation of our long-standing interest
in coumarin and quinolone chemistry,7–9 we became inter-
ested in developing an efficient protocol for synthesizing
substituted pyrano[3,2-e]indolone and pyrrolo[3,2-f]quino-
lone derivatives.

So far, we have utilized the Claisen rearrangement,10,11

radical cyclization,12 ene-yne ring- closing metathesis13

and Heck reaction14,15 for the synthesis of polynuclear cou-
marin and quinolone annulated heterocycles. We have
recently reported the synthesis of novel pyrrolopyridines
by palladium-catalyzed cross-coupling between aryl halides
and alkynes.16 Generally an electron withdrawing group is
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required for the heteroannulation of acetylenic amines to
increase the nucleophilicity of nitrogen17–21 and a few
examples of the heteroannulation of acetylenic amines have
been reported with free amines.22–24 To the best of our
knowledge, there is no report of the heteroannulation of
acetylenic amines possessing an electron donating group.
Herein, we report the results of our investigation on the
synthesis of biologically important substituted pyrano-
indolones and pyrroloquinolones via Cu(I) catalyzed cycli-
zation of acetylenic amines possessing an electron donating
group on the nitrogen atom.

The required precursors for heteroannulation 3a–e were
synthesized in moderate to good yields by Sonogashira
coupling of 2a–e with (trimethylsilyl)acetylene using
Pd(PPh3)2Cl2 as catalyst and CuI as the co-catalyst in
anhydrous THF/DMF mixed solvent containing Et3N with
heating for 6–8 h. Compounds 2a–e were prepared by bro-
mination of the corresponding amines 1a–e with NBS in
CH3CN at 25 �C for 30 min (Scheme 1). The starting
amino-coumarin and quinolones 1a–e were prepared from
commercially available coumarin and quinoline, respec-
tively, using a standard procedure.25,26 However, we ini-
tially encountered trouble with the Sonogashira reactions
of 2a–e and the optimum conditions were found through
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Scheme 1. Synthesis of heteroannulated precursors 3a–e. Reagents and
conditions: (i) NBS, CH3CN, rt, 30 min; (ii) (trimethylsilyl)acetylene,
5 mol % Pd(PPh3)2Cl2, 5 mol % CuI, 5:3:2 DMF/THF/Et3N, 70 �C, sealed
tube, 6–8 h.
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Scheme 2. Synthesis of heteroannulated products 4a–c. Reagents and
conditions: (i) DMF, 50 mol % CuI, reflux, 1 h.

Table 2
Optimization of the reaction conditions for the cyclization of 3a
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Entry Catalyst Solvent Temp Time (h) Yield (%)

1 I2 (2.5 equiv) 1,4-Dioxane rt 24 nr
2 I2 (2.5 equiv) Ethanol rt 24 nr
3 I2 (2.5 equiv) THF Reflux 1 ub
4 NIS (2.5 equiv) MeCN rt 12 ub
5 TBAIa (2.5 equiv) THF Reflux 5 ub
6 CuI (2.5 equiv) DMF Reflux 3 83
7 CuI (50 mol %) DMF Reflux 1 99

a Tetrabutylammonium iodide, nr—no reaction, ub—uncharacterized
byproduct.
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a series of experiments where sequential changes were made
to the catalyst, base and the solvent (Table 1). The reac-
tions were optimized by smoothly heating the reaction in
a sealed tube.

To achieve the heteroannulation of the acetylenic
amines 3a27–e in one step, we began our investigation using
an iodocyclization strategy and various reagents were used
as the iodine source. However, we failed to achieve cycliza-
tion by this method. Finally, we succeeded in cyclizing the
acetylenic amines 3a–e by refluxing in DMF in the presence
of 50 mol % of CuI for 1 h (Scheme 2). Heteroannulation
reaction demands higher activation energy. The optimized
conditions for the heteroannulation were found through a
series of experiments where sequential changes were made
to the catalyst, temperature and the solvent used (Table 2).

Using this method, we were able to synthesize biologi-
cally important substituted pyrano[3,2-e]indolones and
pyrrolo[3,2-f]quinolones (4a28–e) in three steps and in
excellent yields as shown in Table 3.

The mechanistic pathway for the formation of CuI(I)
catalyzed heteroannulated product 4a–e is not clear.29,30

To establish the mechanism, we repeated the conversion
of 3c to 4c with an electron withdrawing group on nitrogen
atom (3c0) to see whether the reaction follows a radical or
an ionic pathway. We obtain the cyclized product 4c in
excellent yield. The conversion of 3c to 3c0 was performed
by the acylation of 3a with trifluoroacetic anhydride in the
Table 1
Optimized conditions for the Sonogashira reaction of 2a

Entry Catalytic system

1 5 mol % Pd(PPh3)2Cl2, 5 mol % CuI
2 10 mol % Pd(PPh3)2Cl2, 5 mol % CuI
3 5 mol % Pd(PPh3)2Cl2, 5 mol % CuI
4 2.5 mol % Pd2dba3, 15 mol % PPh3, 5 mol % CuI
5 5 mol % Pd(PPh3)4, 5 mol % CuI
6 2 mol % Pd–C (10%), 2.5 mol % PPh3, 5 mol % CuI
7 5 mol % Pd(PPh3)2Cl2, 5 mol % CuI
8 5 mol % Pd(PPh3)2Cl2, 5 mol % CuI
9 10 mol % Pd(PPh3)2Cl2, 5 mol % CuI

nr—No reaction.
a THF/Et3N, 5:2.
b CHCl3/Et3N, 5:2.
c CH3CN/Et3N, 5:2.
d THF/Et3N, 5:2, in a sealed tube.
e DMF/THF/Et3N, 5:3:2, in a sealed tube.
presence of anhydrous K2CO3 in dry 1,4-dioxane at 25 �C
for 1 h (Scheme 3). As the reaction proceeds smoothly with
both electron donating and electron withdrawing groups,
we thought that the reaction proceeds through a radical
pathway. Thus, we studied the cyclization in the presence
of hydroquinone (threefold excess) as a radical inhibitor
under identical conditions as stated above to ascertain
the involvement of a radical pathway. It was found that
the reaction was not affected by the presence of hydro-
quinone thereby ruling out a radical pathway. Further
mechanistic studies are underway.
Temp (�C) Time (h) Yield (%)

rt 36 10a

rt 36 10a

Reflux 10 Tracea

Reflux 8 12b

rt 20 Tracec

Reflux 8 nra

50 12 55d

70 8 80e

70 8 80e



Table 3
Heteroannulated products
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Scheme 3. Heteroannulation reaction of 3c0 possessing an electron
withdrawing group. Reagent and conditions: (i) Trifluoroacetic anhydride,
K2CO3, 1,4-dioxane, 1 h; (ii) DMF, 50 mol % CuI, reflux, 1 h.
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In conclusion, and to the best of our knowledge, the
work reported here represents the first example of Cu(I)
catalyzed cyclization that allows access to pyrrolocouma-
rins and pyrroloquinolones in excellent yields. Addition-
ally, application of these heterocycles in natural product
synthesis is currently underway and the results will be
reported in due course.
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